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Abstract

When consumers are forward-looking with respect to their demand for a habit-forming

good, traditional measures of price elasticity are misleading. In particular, such measures

underestimate sensitivity to long-run price shifts– and therefore underestimate the potential

effect of policy instruments that act through price. Correcting elasticities for the behavior

of the price process requires a model with forward-looking consumers, a habit-forming good,

and uncertain relative prices. With appropriate restrictions on the type of price uncertainty,

this paper shows that it is possible to solve for the optimal consumption path under any

price process. Simulations then sketch out how habits and the price process shape demand.

Gasoline demand motivates the model and illustrates its implications.

1 Introduction

Most models of gasoline demand suffer two shortcomings: they oversimplify the dynamics of con-

sumer behavior, and they ignore the dynamics of gasoline prices.

This neglect of dynamics is likely to prejudice estimates of price sensitivity towards zero. If

gasoline is a habit-forming good and consumers are forward-looking, that is, consumers will respond

more vigorously to long-run price shifts than to short-term fluctuations. All types of price changes,

however, are lumped together in traditional measures of price elasticity, and so such measures will

underestimate demand’s responsiveness to long-run price changes.

This systematic underestimation is of particular concern if we use price elasticity to project

the effect of long-run price changes, such as the price changes we might bring about through tax

increases or carbon pricing. To correct this bias, we need a model that takes into account both

consumers’habits and the process that the gasoline price follows over time.

Such a model will allow us to correct price-elasticity estimates for the type of price change at

hand– short-term or permanent, crude-price driven or policy-driven. It will allow us to examine

how demand is shaped by the gasoline price process, and thus allow us to project how demand

would change if we tweaked that process. And it will allow us, eventually, to estimate how much

of the variation in price elasticity across regions is caused by variation in price processes rather

than by variation in infrastructure or differences in consumers themselves.

Significant technical hurdles arise from the combination of rational habits and price uncertainty.

Indeed, the ideal formulation of the model is so computationally demanding that it is intractable.

To lower these technical hurdles and render the model feasible, I place certain restrictions on price
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uncertainty. Given these restrictions, I can calculate price elasticities that take the price process

into account.

This paper focuses on theory, simulating how consumers’price sensitivity varies with parameters

of the price process. Later, the implications of this model can be used to estimate the effects of

the price process in practice.

Naturally, although this model of demand is motivated by gasoline, it will– both in theory and

in practice– apply to any habit-forming good.

2 Background

Over the years the rational habits literature has burgeoned, with papers suggesting alternative

empirical structures1 ; analyzing the problem in continuous2 as well as discrete time; and applying

rational habits to goods as diverse as milk3 , cigarettes4 , and cocaine5 .

Somewhat surprisingly, only one paper within this large literature has addressed relative price

uncertainty in a multigood model. Coppejans et al. (2007) examine such a scenario in the context

of cigarette demand. They prove that when all available information about the future price

distribution is contained in the current price of the habit-forming good, an increase in the variance

of that distribution will reduce consumption of the habit-forming good. They go on to estimate

a negative effect of price variance on the likelihood and intensity of smoking. The paper does not

solve out for demand or consider how the form of the price process shapes demand. Nor does it

explore habits’effect on price responsiveness, confining its attention to uncertainty’s effect on the

level of demand. Price responsiveness is of primary concern, however, in the case of habit-forming

goods whose markets invite government intervention. I focus, therefore, on the intersection between

price responsiveness and price dynamics.

3 Building a Model

3.1 Introducing of Habits by Modifying the Consumption Variable

To build a model that yields intuition about how habits influence consumers’response to gasoline

price changes, we must first set up a scheme whereby past behavior affects current behavior.

Either a HAD or a short-memory approach will accomplish this, and in fact both can be nested

within a broader model. Roughly following Spinnewyn (1981) and Browning (1991, App. A), I let

consumers’utility for gasoline depend upon the adjusted quantity gt:

gt = gt − δsgt + γg (1)

where gt is the quantity of gasoline consumed in period t, and δ and γg are constant parameters.

The variable sgt is a gasoline habit-stock variable, which decays over time and is replenished with

each period’s consumption:

sgt = αgt−1 + (1− α)sg,t−1, 0 ≤ α ≤ 1 (2)

1Becker, Grossman, and Murphy (1994)
2Houthakker and Taylor (1966) and Becker and Murphy (1988), for example.
3Auld and Grootendorst (2004)
4Baltagi and Griffi n (2001), Chaloupka (1991)
5 Grossman and Chaloupka (1998)
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Using (2) to define and substitute for sg,t−1, and iterating this process for further lags, we can

write the habit stock as an infinite sum of past gasoline consumption:

sgt = α

∞∑
i=1

gt−i(1− α)i−1 (3)

The parameter δ adjusts the strength of habits. If δ = 0, then there are no habits: only

current consumption enters into the agent’s utility function in any period, so preferences are time-

separable. As δ increases, the effect of the habit-stock on the reference bundle gt grows, and

preferences depend more and more on past consumption. The higher the δ, the stronger the

good’s addictiveness.

To verify that this specification of the reference quantity gt nests both the short-memory

model and the HAD model, note that by the appropriate choice of α, we can recover either.

First, to recover the short-memory model, let α = 1. The habit-stock is then given by sgt =

αgt−1 + (1 − α)sg,t−1 = gt−1, and the reference quantity is gt = gt − δgt−1 + γg. The impact of

gasoline consumption on gt therefore lasts only one period. To recover the HAD model, we can

take a cue from Browning (1991, App. A) and let δ = α−1
α . Then

gt = gt −
α− 1

α

[
α

∞∑
i=1

gt−i(1− α)i−1

]
+ γg (4)

=

∞∑
i=0

gt−i(1− α)i + γg (5)

The reference quantity gt is thus a weighted sum of current and all past gasoline consumption.

Dependence on all past values of gt is, of course, what characterizes the HAD model.

3.2 Infeasibility of the Ideal Problem

Ideally, we would proceed by maximizing the expectation at t = 1 of a weighted sum of the agent’s

present and future utilities, subject to budget constraints and the rules governing the habit-stock,

and with gasoline prices pt drawn from a distribution that evolves over time:

max
g1,g2,...,gT

E1

[
T∑
t=1

βt−1u (gt, ct)

]
(6)

(T = integer or ∞ )

s.t. budget constraints6 ;

gt = gt − δsgt + γg; sgt = αgt−1 + (1− α)sg,t−1, 0 ≤ α ≤ 1

with

pt ∼ f (It−1) , where It−1 is information available at time t− 1

The uncertainty enters this version of the problem through the unknown future prices in the

budget constraints. The variable ct represents a general, non-habit-forming good, whose price is

normalized to 1.

Unfortunately, the combination of intertemporally-dependent utility and serially-dependent

price distributions renders this problem surprisingly cumbersome. No simple backward induction

6The budget constraints will depend upon the time horizon and the rules governing intertemporal borrowing.
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is possible, as optimal consumption at T will depend not only on the realization of the price at

T , but on previous consumption decisions– and thus on previous expectations of the entire path

{p1, ..., pT }. Another option would be to reformulate this ‘ideal’problem as a dynamic program-

ming problem and approach it via value function iteration or collocation, but these approaches

are doomed by a surfeit of state variables and the curse of dimensionality. (To demonstrate this,

I set up the problem as a Bellman equation in Appendix A and walk through the computational

approaches in Appendix B.)

3.3 Simplifying the Consumer’s Problem Using Uniformly-Distributed
Prices

Given the infeasibility of solving the ideal problem, I turn to a version of the problem that places

limits on the distribution of price uncertainty and agents’learning behavior. These limits yield a

model that is solvable no matter how complicated the price process.

First, assume prices are drawn from a uniform distribution. Combined with conditions on the

utility function that are not overly restrictive, uniformly-distributed prices allow us to solve for

expected utility in any time period.

A uniform price distribution is not, of course, the only way to achieve a closed-form expression

for expected utility: if we were willing to work with a discrete price distribution, for example, we

could easily solve for expected utility without imposing any extra restrictions on the form of the

utility function. At another extreme, if we were willing to impose linear utility, we could work with

more complicated price distributions, including log-normal. Of the possible combinations of price

distributions and utility functions that yield closed-form expected utility, however, the uniform

price distribution seems a reasonable choice, allowing a sensible choice of utility function without

sacrificing succinctness or too much plausibility in the price distribution.

To see how uniformly-distributed prices can be used to simplify the problem, let the price of

gasoline in period t be distributed uniformly, with lower bound lowt and upper bound hight:

density of pt : f (pt) =
1

hight − lowt

Let the agent have period-t utility of the form

ut = (ct + γc)
σc + θ

(
gt − δsgt + γg

)σg
Finally, assume a budget of the form

ptgt + ct = at

where the price of other consumption ct is normalized to 1, and at represents assets available for

consumption at time t. This implies time-fixed budgets, a restriction that will be justified later

in this section. Substituting this budget into the utility function, we can eliminate ct and express

utility in terms of gasoline consumption and prices:

vt = (at − ptgt + γc)
σc + θ

(
gt − δsgt + γg

)σg
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Now, assuming lowt and hight are known, we can solve for the expectation of vt:

E [vt] =

hight∫
lowt

vtf (pt) dpt

=
1

hight − lowt

[
(at + γc − lowtgt)

σc+1 − (at + γc − hightgt)
σc+1

gt (σc + 1)

]
+ θ

(
gt − δsgt + γg

)σg
The expectation of period-t utility at any time prior to t, therefore, can be expressed as a function

of known bounds of the uniform time-t price distribution, current gasoline consumption, and the

habit-stock sgt. In Appendix C, I show that such a closed-form expression for expected utility

exists for a variety of additively- and multiplicatively-separable utility functions.

The closed form of E [vt] makes it straightforward to maximize expected time-t utility with

respect to time-t gasoline consumption. Similarly, it is now straightforward to consider a mul-

tiperiod model in which the agent maximizes a discounted sum of present and expected future

utility:

Max
g1,g2,g3,...,gT

v1 +

T∑
t=2

βt−1E [vt] (7)

s.t. non-negativity constraints (9), (10), (11), and (12)

where β is the agent’s discount factor, T is his time horizon, and the current (t = 1) price is

known.

What are the relevant non-negativity constraints? Note that the budget has been built into

the expression of utility v, so a no-borrowing rule can be enforced by imposing

ct = at − ptgt ≥ 0 ∀ t (8)

At t = 1, the price is known, so this condition is simply

c1 = a1 − p1g1 ≥ 0 (9)

From t = 2 onward, however, (8) is not relevant, as our interest is in expected utility rather than

utility. To ensure that utility exists no matter what price is realized, we must constrain both

(at + γc − lowtgt) and (at + γc − hightgt) to be non-negative.

at + γc − lowtgt ≥ 0, t ≥ 2

gt ≤
at + γc
lowt

, t ≥ 2

at + γc − hightgt ≥ 0, t ≥ 2 (10)

gt ≤
at + γc
hight

, t ≥ 2

Since at+γc
hight

≤ at+γc
lowt

, only gt ≤ at+γc
hight

binds. This means that the agent’s gasoline consumption
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must always be less than what he could buy if prices were at their maximum and he spent all his

money on gas ( at
hight

) plus some small constant ( γc
hight

)– or, rather, minus some small constant if

γc is negative and commits the agent to consuming some amount of the other good c.

In addition to these budget-related constraints, we must also ensure that both gasoline con-

sumption (11) and the "adjusted" gasoline quantity over which the agent takes his preferences (12)

are non-negative:

gt ≥ 0 ∀ t (11)

gt − δsgt + γg ≥ 0 ∀ t (12)

Returning to the budget constraints, why eliminate the possibility of borrowing and saving

across time? This restriction is crucial in allowing us to solve easily for E [vt]; without it, at
would have to be chosen by maximizing expected utility across the agent’s entire time horizon.

The agent’s allocation of spending across time would depend both on his beliefs about future

prices and on the size of the gasoline habit he anticipated holding in every future period– and

the latter would depend upon his beliefs about future prices. Given the possibility of borrowing

and saving, therefore, the agent’s problem would revert back to the computationally-infeasible

dynamic programming problem discussed in Section 3.2 and Appendices A and B. From a technical

viewpoint, the elimination of intertemporal allocation decisions is thus vital.

Note that although this ban on borrowing and saving imposes limits on the consumption of

g and c in every period, it is not related in any practical way to the literature on rationing. In

the rationing literature (see, e.g., Neary and Roberts 1980 or Ellis and Naughton 1990), limits

are imposed not on overall spending in a period, but on the consumption of a particular good or

goods. Here, the limit is imposed on overall period expenditure: given a fixed expenditure level,

spending may be allocated in any way across goods.

A convenient side-effect of the ban on borrowing and saving is that it allows us to examine

the effects of habits without the confounding veil of intertemporal substitution. Imagine for a

moment that the agent could borrow and save across time. When faced with a future increase in

the gasoline price, his current reaction would be governed by two impulses:

1. habits would drive him to reduce current gasoline consumption in order to reduce the cost

of servicing his habit in the future, and

2. the current-to-future price differential would drive him to substitute cheap current gasoline

for expensive future gasoline.

The ban on borrowing prevents the second effect, allowing us to examine the habits-effect in

isolation.

3.4 Limitations of the Model

These restrictions allow us to bypass an infeasible problem and examine consumer responses to a

limited type of price uncertainty. It is important to bear in mind, however, that these restrictions

also place several limitations on the model.

The first limitation of the model is, of course, the uniformity of the price distributions. It

would be more realistic to assume prices that clustered around a mean, with larger deviations

occurring less frequently.
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The second and more significant limitation of the model is the absence of consumer learning.

The agent behaves, that is, as if certain of the distributions from which future prices will be

drawn. He forms his beliefs about future distributions using information available in the initial

period, and he does not revise those beliefs in subsequent periods. This implies that the realization

of tomorrow’s price does not affect the distribution of prices thereafter– or, rather, that the agent

does not behave as if he’ll receive new information tomorrow and re-optimize given his revised

beliefs. In short, this is not a dynamic programming problem.

On a more optimistic note, the agent’s certainty about future price distributions does not imply

that those distributions must be constant. The sole restriction on the price process (or on the

agent’s beliefs thereof) is that no shock that occurs after the initial period can affect subsequent

price distributions. A shock that occurs in or before the initial period can propagate along

according to any model at all. The agent may believe prices to be trending upward or downward

or reverting to a long-run mean; he may believe price variance to be increasing or decreasing or

fluctuating; indeed, he may believe the mean and variance of future prices to be hopping along a

path that is purely arbitrary, as long as he knows from the outset what this path will be. This is

one redeeming feature of this model: we can examine consumer behavior under any price process

we want– and, in particular, under price processes we’ve estimated, and variations thereof.

To reiterate, this model allows us to examine a very particular type of price uncertainty–

uncertainty arising from the variance of known, uniform future price distributions. It also allows

us to examine the behavioral effects of the processes governing the mean and variance of price.

We can explore, for example, what happens when we increase the duration of a shock to the mean

price. We cannot, however, use this model to examine the effects of uncertainty about the future

price distribution.

4 Applying the Model

The restrictions detailed in section 3.3 yield a model that is tractable, but to solve (7) analytically

and symbolically would still be unworkable, at least for reasonable values of the time horizon

T . Instead, I choose parameter values and perform the consumer’s optimization numerically, via

search. To measure elasticity, I displace the gasoline price by some small ε, re-optimize, and

calculate the percent change in first-period gasoline consumption. By varying the parameters of

the model and price process, we can sketch out the consumer’s responsiveness under a continuum

of scenarios.

4.1 The Price Process

Although the known uniform price distributions could be evolving in any manner, for the purpose

of illustration I let the mean of future price distributions follow a simple mean-reverting process:

p1 = p0 + shock1 (13)

pt = p0 + ρt−1shock1 + ut, t = 2, ..., T (14)

where

7



• p1 is the known, realized price at t = 1;

• shock1 is the portion of the period-1 price that comes as a deviation from the long-run mean

p0;

• ρ ε [0, 1] governs the speed with which the price reverts to its long-run mean; and

• ut is the unanticipated component of pt, drawn from some uniform distribution centered on

0.

Note that the only "shock" that propagates through future prices is shock1: each ut is a single-

period "shock" that affects the price only in period t. Also note that the actual realizations of

p2 through pT are irrelevant to the consumer’s problem: the agent cares only about the bounds of

future price distributions, which are calculated as E [pt] ± 1
2spreadt, where spreadt is the length

of the support of the uniform distribution at t.

This process for the mean is not intended as a realistic representation of the gasoline price

process. It has been adopted, instead, because it encapsulates the persistence of price shocks in

a single parameter, ρ, and thus allows us to see quite clearly how the durability of price shocks

affects demand behavior.

4.2 Optimization Methods and Calculation of Elasticity

I solve for the optimal consumption path using line search methods. Details of the optimization

procedure are provided in Appendix D.

To calculate elasticity, I first optimize under a base scenario in which shock1 = 0. I then

displace the initial price by ε by setting shock1 = ε = 0.1, propagating this shock through all

subsequent time periods according to (14).7 If ρ = 0, future price distributions remain the same

and only p1 changes; if ρ = 1, all future distributions shift upward by ε; and if 0 < ρ < 1, future

price distributions shift upward, but their means creep back toward p0 with time.

Under this new price regime, I re-optimize. I calculate the agent’s price elasticity as

%∆g∗1
%∆p1

≈
g∗′1 −g

∗
1

g∗1
ε
p0

where g∗1 is the agent’s optimal period-1 gasoline consumption under the initial price scenario and

g∗′1 is his optimal period-1 consumption after the small price displacement.

4.3 Beginning- and Endpoint Concerns

Although it would be interesting to choose realistic parameter values by calibrating the model to

real-world data, for the time being I merely wish to sketch elasticity’s theoretical relationship with

various parameters. For that purpose, it suffi ces to choose a convenient set of parameters and

consider variations from that baseline:
7Note that it is not necessary for the base scenario to be shock1 = 0. We could just as easily base the calculation

of elasticity off of a scenario in which the agent is already adjusting to another price shock.
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Price Process Parameters Model Parameters

p0 = 3 T = 10

ρ = 0.5 at = 10000 ∀ t
spreadt = 4 ∀ t ≥ 2 (i.e. var(pt) = 4

3 , t ≥ 2 ) γc = γg = 0.5

σc = σg = 0.5

θ = 0.3

β = 0.9

δ = 0.5

α = 1

Recalling the definition of the habit stock, sgt = αgt−1 + (1− α) sg,t−1, note that the choice

α = 1 implies short-memory habits. It also implies that sg1 = g0, so the starting point for habits

is just time-0 gasoline consumption.

The initial consumption level g0 cannot be chosen as arbitrarily as the rest of the set of base

parameters. Too high a g0, and the agent finds himself drastically cutting back on gasoline in

period 1; too low, and the agent begins with a sudden gasoline binge. This first-period adjustment

affects both first-period elasticity and the interactions between first-period elasticity and various

parameters.

To show that g0 affects first-period elasticity, Figure 1 plots elasticity (given the parameter

values above) against a range of g0s. The agent is adjusting his initial consumption upward

(g∗1 > g0) through g0 = 55 and downward from g0 = 60, and clearly he is much more sensitive to a

small price increase when in the process of increasing consumption than when decreasing it. To

show that g0 affects other parameters’interactions with elasticity, Figure 2 plots elasticity versus

ρ for three different values of g0. The lower the value of g0, the more sensitive elasticity is to ρ,

which governs the durability of a price shock.

Ideally, therefore, we might want to set g0 equal to the long-run equilibrium g∗t under the

base parameters and constant prices. Such an equilibrium does not exist, however, because the

agent’s finite horizon forces a gasoline binge as t approaches T . In all periods prior to T , gasoline’s

positive contribution to utility is offset by its negative habit-effect the following period. Gasoline

consumption in the final period, however, is never penalized, and so the agent will always want to

consume more gasoline in period T . As long as the consumer has habits (δ 6= 0), moreover, he

will begin increasing gasoline consumption in the periods leading up to T . In short, there is no

"equilibrium" level at which the consumer would be happy to consume gasoline every period. For

an illustration of the agent’s consumption path, see Figure 3.

Although gasoline consumption rises sharply towards T , it does plateau around the middle of

the time horizon (see Figure 3). If we set g0 near the level of this plateau, optimal consumption

(under the constant-mean-price scenario) should be relatively stable at the beginning of the agent’s

horizon.

To find a value of g0 such that g0 is near the plateau, I iterate through the agent’s problem

several times. First I set g0 = 0 and optimize. From the resulting consumption path, I take g∗5
and use this as my new g0. Re-optimizing, I take g∗5 from the new resulting consumption path

and again replace g0. I do this a total of five times, finally setting g0 equal to g∗5 from the fifth

optimization. For the base parameter set, this process yields g0 = 58.9119. Although the level of

the plateau depends on the model’s parameters, I keep g0 at this level unless otherwise noted.
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Figure 1: Elasticity versus g0

Figure 2: Elasticity vs. ρ, for varying g0
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Figure 3: Gasoline Consumption over Time

Figure 4: Choosing g0: Consumption paths in first and fifth iterations
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This process for choosing g0 does not eliminate the apocalyptic gasoline binge, but it does ensure

steady consumption over most of the horizon. With T suffi ciently large, end-of-horizon behavior

is hugely discounted, and its effect on first-period behavior is insignificant. To demonstrate that

T = 10 is a suffi ciently long horizon, Figure 5 plots optimal first-period consumption for models

with T = 5 , 10 , 25, and 50. Consumption drops 1.77% from T = 5 to T = 10, but after that it

only falls another 0.03% from T = 10 to T = 50. Similarly, increasing the horizon beyond T = 10

has little effect on first-period price elasticity (see Figure 6). Given the negligible effect and high

computational price of lengthening the horizon beyond ten periods, it appears appropriate to settle

at T = 10.

Figure 5: Optimal first-period consumption vs. horizon T

5 Results

By varying the model parameters, we can now simulate the interacting effects of habits and the

price process on price elasicity.

Duration of Price Shocks Given rational habits, consumers are sensitive not just to the current

price of gasoline, but to the duration of price shocks. Figure 7 illustrates this sensitivity. At the

base parameter set, the difference between the elasticity with respect to a purely-temporary shock

(ρ = 0) and the elasticity with respect to a permanent shock (ρ = 1) is nearly two-fold: -0.56 vs.

-0.99.

Future Price Uncertainty Observing the effect of future price uncertainty is easier when θ is

increased above its base value of 0.3, so I temporarily set θ = 0.5. I adjust g0 accordingly, as per
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Figure 6: Elasticity vs. time horizon, for varying ρ

Figure 7: Elasticity vs. durability of price shocks (ρ)
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the procedure outlined in Section 4.3.

Figure 8 shows the effect of changing the spread of the uniform distribution from which prices

are drawn for all periods t = 2, ..., T . As uncertainty increases, price sensitivity slightly decreases.

This is true whether price shocks are fleeting or permanent: no matter what process governs the

future price’s mean, increasing the future price’s variance reduces the magnitude of elasticity. The

mean’s path and the variance do not act entirely independently on elasticity, however: although

it is hard to observe in Figures 8 and 9, increasing ρ magnifies the effect of future uncertainty

slightly.

Figure 8: Effect of future price uncertainty, for varying price-shock durations

Just as interesting as the direction of the effect of price uncertainty is its magnitude– namely,

tiny. Increasing the spread of all future price distributions from 0.1 to 6 increases the variance of

those distributions from 0.00083 to 3– a factor of 3600– and yet only changes elasticity by 0.9% to

1.5%. Figure 9, which plots elasticity against ρ for spreadt = 0.1 and spreadt = 6, illustrates just

how small the effect of price uncertainty is in comparison to the effect of price-shock duration. In

the real world, of course, price uncertainty does not take the restricted form assumed here, where

the means of future price distributions are known with certainty. The relatively large effect of ρ,

which controls these future means, suggests that in the real world, uncertainty about the future

mean price might in fact have a sizeable effect on price responsiveness. Within this limited model,

however, price uncertainty is relatively unimportant.

Alongside its small effect on price elasticity, price uncertainty has a small effect on the level

of demand. Figure 10 illustrates this effect: increasing the price spread from 0.1 to 6 for all

t ≥ 2 decreases first-period consumption by 0.37%. This effect is consistent with Coppejans et al.’s

(2007) finding that increasing the variance of future prices depresses demand.
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Figure 9: Elasticity vs. price-shock duration, for varying uncertainty

Figure 10: First-period consumption vs. price uncertainty
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Figure 11: Elasticity vs. habit-strength, for varying ρ

Habit Strength All other things equal, stronger habits imply lower price sensitivity. This

relationship is clear in Figure 11, which plots elasticity against the habit-strength parameter δ.

When ρ = 0.5, increasing δ from 0 (no habits) to 1 (strong habits) decreases the magnitude of

elasticity from 1.95 to 0.020– from very elastic to almost inelastic. As we would expect, the process

of the mean price has no effect on elasticity when there are no habits. As Figure 11 suggests,

ρ also becomes unimportant as δ approaches 1, rendering last period’s consumption as relevant

to current utility as this period’s. At intermediate levels of δ, the duration of price shocks has

an appreciable effect on elasticity, with higher ρ implying higher price sensitivity. At δ = 0.5,

the difference between a single-period shock (ρ = 0) and a permanent shock (ρ = 1) leads, as

previously noted, to a near-twofold difference in elasticity.

Like price uncertainty, habit strength δ affects optimal consumption levels as well as price

sensitivity. Figure 12 plots optimal first-period consumption against habit strength: first-period

consumption decreases with δ until about δ = 0.7, whereupon the trend reverses.

Utility Weight on Habit-Forming Good Predictably, the weight on gasoline in the agent’s

utility function, θ, increases price sensitivity. This relationship is sketched out in Figure 13, which

also makes clear θ’s decreasing marginal effect: as θ approaches 1 and the weights on gasoline and

all other consumption approach equality, the elasticity curve becomes flatter and flatter. The

weight θ could, in theory, exceed 1; but in practice this would imply that gasoline were more

important to utility than all other consumption combined.

16



Figure 12: Optimal first-period consumption vs. habit strength

Figure 13: Elasticity vs. utility’s weight on gasoline
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Also predictably, a higher weight on gasoline in the utility function increases elasticity’s sen-

sitivity to the duration of price shocks. Figure 14 illustrates the cross-effects between θ and ρ.

Note how the slope of the elasticity-vs.-ρ curve deepens for higher θ. This deepening is greatest

for small θ, decreasing on the margin as θ steps down to 1.

Figure 14: Elasticity vs. price-shock durability, ρ, for varying θ

Discounting of Future Utility The discount factor β controls the agent’s weighting of the

future. As β increases– and with it, the agent’s concern for his future utility– both first-period

gasoline consumption and price sensitivity decrease. Figures 15 and 16 illustrate these effects.

As β increases, the duration of price shocks becomes more important to elasticity. This fits

with intuition, and Figure 17 illustrates the effect.

6 Conclusion

By assuming a very particular type of price uncertainty, we have been able to solve and apply a

model of demand with rational habits, multiple goods, and uncertain relative prices. This approach

has allowed us to examine, in particular, the combined effect of rational habits and the price process

on demand’s responsiveness to prices– an area hitherto unexplored.

Knowledge of the various parameters’effects on behavior has the potential for practical appli-

cation. If policymakers want to make consumers more price-responsive, for example, they might

try to reduce consumers’habit strength, δ, through strategies that lower the barriers to behavioral

change. Schemes to make public transport schedules more navigable or provide instruction on
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Figure 15: Optimal first-period consumption vs. discount factor β

Figure 16: Elasticity vs. discount factor β, for varying ρ
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Figure 17: Elasticity vs. price-shock duration, for varying β

fuel-effi cient driving might reduce habit strength; so too would lowering the frictional costs associ-

ated with changing the distance of a commute. (Stamp duty in the U.K., for example, discourages

consumers from relocating closer to a job; policies that reduce job mobility, such employer-tied

health insurance in the U.S., discourage consumers from switching to jobs closer to home.)

A more likely use of the model’s insights comes in predicting consumption responses to price

instruments. In a world conforming to the model’s assumptions, for example, policymakers con-

templating a permanent change in the gasoline tax should forecast the response using ρ = 1 rather

than, say, ρ = 0.5: under the base parameter set, this would imply an elasticity of -0.99 instead of

-0.71. More generally, policymakers should not use elasticities based on consumers’responses to

all manner of price changes to project the response to a permanent, policy-induced price change.

One of the more interesting implications of this model is that the effect of expected price

volatility around a known mean is tiny: elasticity is far less sensitive to the variance of future price

distributions than it is to the duration of changes in the mean price. Given the restricted nature

of uncertainty in this model, this does not necessarily imply that price uncertainty is unimportant

in practice. In the current model, all future price distributions are known. In the real world, where

future price distributions are themselves uncertain and predictions evolve over time, uncertainty

may have a greater effect on demand. Indeed, the importance of price shocks’persistence (ρ)–

and by extension, the importance of future mean prices– suggests that uncertainty about price

distributions is likely to be important. The current restrictions allow us to see that uncertainty

about the mean of future prices is likely to be more important to price responsiveness than volatility

around those future means. If policymakers wish to maximize the effectiveness of price instruments,

they should concentrate on making changes in the mean price credibly permanent rather than
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on reducing price volatility– particularly as reducing price volatility has the knock-on effect of

increasing the level of demand.

Of course, the model’s restrictions on price uncertainty are not its only differences from the real

world: also significant is its imposition of a ban on borrowing and saving. In reality, consumers may

make tradeoffs not only between gasoline consumption and other contemporaneous consumption,

but between gasoline consumption and savings. How this ability to make intertemporal tradeoffs

will interact with the price process to shape demand is not clear-cut. On the one hand, if the

gasoline price increases today and ρ < 1– so that the shock is expected to decay– then consumers

may save relatively more today in order to take advantage of the future’s lower prices. If that

extra savings comes out of gasoline consumption, then the ability to borrow and save may magnify

the immediate response to a gasoline-price increase beyond the response predicted by the model.

On the other hand, intertemporal allocation opens the possibility that consumers may draw from

savings in order to cushion themselves and service their habits during temporary price shocks; and

this would render consumers’ immediate price-responsiveness lower than that predicted by the

model.

Although intertemporal substitution may somewhat affect the effects of habits, however, it will

not eliminate them. Even in a world with flexible intertemporal budgets, the model supplies useful

insights, giving us an idea of what to expect relative to a no-habits scenario. The model’s impli-

cations about the importance of price uncertainty and the duration of price shocks, in particular,

remain relevant– and testable– in the real world.

To realize the model’s practical uses will of course require reconciling it with real-world data.

One approach would be to model the gasoline price process and then choose parameters such

that the model-predicted behavior mimicked observed behavior. Once calibrated or estimated, the

model would allow us to better predict consumers’responsiveness to price changes that differed

from the typical price fluctuations over which elasticity is measured. It would allow us see how

much of the variation in price elasticity across regions was merely the product of regional differences

in price processes. Continuing in this vein, it would allow us to see how much of the variation in

elasticity across regions remained to be explained by other factors– and whether attacking these

other sources of heterogeneity would offer greater scope for manipulating consumer responsiveness

than merely adjusting the gasoline price process.

For now, the model identifies biases that we must beware when using traditional measures of

price elasticity with habit-forming goods.
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A Setting up the Ideal Problem as a Dynamic Programming

Problem

We can reformulate the problem given in (6) as a Bellman equation:

Vt (At, st, pt, x1t,..., xnt) = max
gt,ct
{u(gt, ct) + βE [Vt+1 (At+1, st+1, pt+1, x1,t+1, ...xn,t+1)]} (15)

where

• gt = gt − δst;

• Ai indicates assets in period i;

• Vi is the value in period i;

• x1t, ..., xnt are some variables that are relevant to predicting the future price; and

• the equations of motion for assets and the habit-stock are given by:

At+1 = (1 + r) (At − ct − ptgt)

st+1 = αgt + (1− α) st

To get equations of motion for the remaining state variables, let us suppose that the price

process is given by

pt+1 = f (x1t, ..., xit, ...xnt) e
εt+1

where εt+1 is random and serially uncorrelated. This particular form for the price process is not

necessary, but it is flexible– and it is also convenient, as the random variation enters in a way

that cannot lead to negative prices. The x variables used to predict future prices may be or may

depend upon lagged prices or lagged x:

xi,t+1 = hi (It) e
εxi,t+1

where the function hi maps the information I available at time t to the next period’s expected

value of xi, and εxi,t+1 can be either deterministic or a random component specific to xi. Note,

in particular, that if εxi,t+1 = 0, xi,t+1 could be the price pt or a lag thereof.

We now have equations of motion for the gasoline price,

pt+1 = f (pt, x1t,..., xnt) (eεt+1)

and the price-predicting state variables,

xi,t+1 = hi (It) e
εxi,t+1

Substituting the equations of motion into (15), we have
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Vt (At, st, pt, x1t,..., xnt) = max
gt,ct



u(gt − δst, ct) + βE



Vt+1



(1 + r) (At − ct − ptgt)︸ ︷︷ ︸
At+1

,

αgt + (1− α) st︸ ︷︷ ︸
st+1

,

f (x1t, ..., xit, ..., xnt) (eεt+1)︸ ︷︷ ︸
pt+1

,

h1 (It) e
ε1,t+1︸ ︷︷ ︸

x1,t+1

, h2 (It) e
ε2,t+1︸ ︷︷ ︸

x2,t+1

,

..., hi (It) e
εi,t+1︸ ︷︷ ︸

xi,t+1

, ..., hn (It) e
εni,t+1︸ ︷︷ ︸

xn,t+1






Given this value function equation, we can derive first-order conditions for the maximum of the

right-hand side as well as envelope conditions that indicate how the maximized value V varies with

each of the state variables. These are standard conditions to consider and follow, for example,

Deaton (1992, pp. 21-37), who derives them for a simpler problem.

First-Order Conditions
There will be two first-order conditions, as the agent derives utility from two goods:

1. FOC g:

ug + βE [V1,t+1 (1 + r) (−pt) + V2,t+1α] = 0

or

ug = β (1 + r) (pt)E [V1,t+1]− βαE [V2,t+1] (16)

2. FOC c:

uc + βE [V1,t+1 (1 + r) (−1)] = 0

or

E [V1,t+1] =
uc

β (1 + r)
(17)

Combining these first-order conditions allows us to write E [V2,t+1] as a function of current

prices and marginal utilities:

E [V2,t+1] =
1

βα
(ucpt − ug) (18)

Envelope Conditions
There are n+ 3 envelope conditions, one for each state variable:

1. Marginal utility of wealth: VA,t = V1,t = β (1 + r)E [V1,t+1]

Combining this with (17), we see that the marginal utility of wealth is equal to the

marginal utility of c:

V1,t = uc

2. Marginal "utility" of habit-stock: Vs,t = V2,t = −δug + β (1− α)E [V2,t+1]
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Combining this with (18), we can write

V2,t =
1− α
α

ucpt −
(
δ +

1− α
α

)
ug

3. Condition with respect to current price pt:

Vp,t = V3,t = βE


V1,t+1 (1 + r) (−gt) + V3,t+1

 n∑
j=1

fj (x1t, ..., xit, ..., xnt)
∂xj
∂pt

 (eεt+1)

+

n∑
j=1

V3+j,t+1
∂hj
∂pt

eεj,t+1


Combining this with (17) yields

Vp,t = V3,t = −gtuc + βE

V3,t+1
 n∑
j=1

fj (x1t, ..., xit, ..., xnt)
∂xj
∂pt

 (eεt+1)


+βE

 n∑
j=1

V3+j,t+1
∂hj
∂pt

eεj,t+1


4. n conditions with respect to price-prediction variables

xkt, k = 1, ..., n : V3+k,t = βE

V3,t+1fk (x1t, ..., xit, ..., xnt) (eεt+1) +

n∑
j=1

V3+j,t+1
∂hj
∂xkt

eεj,t+1


B Approaches to the Value Function Problem and the Curse

of Dimensionality

The problem set up in Appendix A now looks like a traditional (albeit complicated) stochastic

programming problem, to which one could apply standard techniques.

B.1 Value Function Iteration

The first technique to which we might generally turn is value function iteration.8 To apply this

method to our problem with continuous state and continuous control variables, we would first need

to discretize the state space. Ignoring for the moment any diffi culties with this discretization, let

us imagine that we discretize each of the n + 3 state variables (indexed by s) into some number

of points, ds. This gives us an (n+ 3)-by-(n+ 3) matrix containing all the possible combinations

of these points, with a total of D =

n+3∏
s=1

ds non-blank gridpoints. Let q = 1, ..., D be an index of

these gridpoints.

The method of value function iteration hinges on the stationarity of the value function V : for

any set of state variables x, Vt (x) = Vt+1 (x) = V (x). In other words, stationarity implies that

8For a more detailed and technical exposition of value function iteration, see Judd (1998), Chapter 12; Miranda
and Fackler (2002), Chapters 8 and 9; and/or Ljungqvist and Sargent (2004), Chapters 3 and 4. This walk-through
of how value function iteration might be applied to the problem at hand relies most heavily on Judd (1998), with
additional background garnered from Mele (2009).
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our set of state variables captures any and all influences on value that can vary over time. We

can rewrite the value function without the time subscripts on V :

V (At, st, pt, x1t,..., xnt) = max
gt,ct


u(gt − δst, ct) + βE


V



(1 + r) (At − ct − ptgt)︸ ︷︷ ︸
At+1

, αgt + (1− α) st︸ ︷︷ ︸
st+1

,

f (x1t, ..., xit, ..., xnt) (eεt+1)︸ ︷︷ ︸
pt+1

,

h1 (It) e
ε1,t+1︸ ︷︷ ︸

x1,t+1

, h2 (It) e
ε2,t+1︸ ︷︷ ︸

x2,t+1

,

..., hi (It) e
εi,t+1︸ ︷︷ ︸

xi,t+1

, ..., hn (It) e
εni,t+1︸ ︷︷ ︸

xn,t+1






or

V (xt) = max
gt,ct
{u(gt − δst, ct) + βE [V (xt+1)]}

where the transition from xt to xt+1 is governed by the previously-discussed equations of motion.

For convenience, write the probability of transitioning from the state given by gridpoint q to the

state given by gridpoint r as πqr:

πqr = Pr [xt+1 = xr|xt = xq]

To apply value function iteration, we would first make some initial guess, V 0, about the form of

the value function. For now, it will be helpful to think of value as a function of the controls c and

g, given a particular state q: that is, imagine that we guess the functions V 0q (ct,gt), q = 1, ..., D.

Using these guesses together with the probabilities πqr, we can write a guess of expected future

value, given starting state-gridpoint q, as the weighted average
D∑
r=1

πqrV
0
r . We can then improve

our guess at the value function by solving the maximization problem

V 1q = max
gt,ct

[
u(gt − δst, ct) + β

D∑
r=1

πqrV
0
r

]
, q = 1, ..., D (19)

The resulting improved guesses, V 1q , q = 1, ..., D, can then be substituted into the right-hand

side of (19), and we can again solve the maximization problem to improve our guess at the value

function:

V 2q = max
gt,ct

[
u(gt − δst, ct) + β

D∑
r=1

πqrV
1
r

]
, q = 1, ..., D

This process of substituting and re-maximizing can be iterated indefinitely:

V a+1q = max
gt,ct

[
u(gt − δst, ct) + β

D∑
r=1

πqrV
a
r

]
, q = 1, ..., D (20)

If our value function and probability distributions meet a variety of conditions, then these iterations

should converge toward the true value function: we can just continue iterating until
∣∣V a+1 − V a∣∣

is suffi ciently small, then calculate the policy associated with this value function.

I will not venture into proving that this value function iteration procedure would indeed converge

upon the true value function, nor do I wish to explore in any detail the conditions that value
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function iteration might necessitate imposing. My primary concern is, instead, the workability

of value function iteration in practice. No matter how sublimely the approach of value function

iteration might solve our problem in theory, in practice the approach will be cursed to uselessness

by the many dimensions of the state space.

The curse of dimensionality is a common barrier in value function iteration. The problem

arises from the discretization of our continuous state variables. Recall that we have n + 3 state

variables, each discretized into ds points, for a total of D =

n+3∏
s=1

ds discrete states. If we chose ds

to be the same for all s, ds = d ∀ s, we would have D = dn+3. Also recall that we must perform D

maximizations for every iteration of the value function (see (20)). Even in the simplest scenario,

with a rough discretization of the state variables (d = 100, say) and a Markov process for prices

(n = 0), we would have to perform a million maximizations for every iteration. To consider a

slightly more realistic price process– one that included, for example, two lags of the price and a

lag each of the local tax level and the world crude oil price– we would have to perform a billion

maximizations for every iteration. The sheer computational intensity of value function iteration

renders it prohibitive for the realistic price processes I wish to consider.

Of course, the commonness of the curse of dimensionality means it has received considerable

attention. There are tricks and variations that reduce the amount of computation necessary: if

we turned to policy function iteration, for example, we might be able to reduce the number of

iterations required before the value function converged (Mele 2009, Lecture 2). Policy function

iteration would not, however, do anything to reduce the amount of computation required for each

iteration.

B.2 Collocation

A more promising way to reduce computing time is collocation, a type of projection method.9

Collocation approaches the problem in a fundamentally different way: instead of concentrating on

the value function itself, it exploits the first-order conditions and envelope conditions derived in

Section A.

To use collocation, first imagine that the solution we’re looking for– the policy function, giving

optimal consumption decisions as a function of the state variables– can be written as g (x), where

x is, once again, a set of state variables. Note that if we knew the optimal policy, then by the

very definition of its optimality we could substitute it back into the Bellman equation to find the

value function. (That is, max
gt,ct

Ψ = Ψ (g∗t , c
∗
t ).)

Next, rewrite the first-order and envelope conditions as functions of the optimal policy g (x).

For simplicity, organize these conditions such that the right-hand side of each equation is 0. Denote

the left-hand sides of the conditions as the operator T. The set of first-order and envelope

conditions can thus be written succinctly as

T (g (x)) = 0 (21)

We’d like to know the policy function g (x) that satisfies (21). Although we don’t know the

form that the function g (x) takes, we can approximate it as a weighted average of some number

9For a more detailed treatment of collocation, see Judd (1998), Chapter 11, upon which the following exposition
is chiefly based. Additional backround from Mele (2009) has also been useful. Miranda and Fackler (2002, pp.
141-144, 227-237, 291-295) touch on collocation methods, as well.
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of functions with known forms. Let us use k of these known functions, called basis functions.

Denote each of these basis functions ϕi, and call the corresponding weight wi. Our approximation

of g (x), ĝ (x), can therefore be written

ĝ (x) =

k∑
i=1

wiϕi

By an appropriate choice of weights wi, we can construct an approximation ĝ (x) that closely

follows the first-order and envelope conditions:

T (ĝ (x)) ≈ 0 (22)

To find weights such that T (ĝ (x)) is close to 0, we can minimize with respect to these weights

the norm of T (ĝ (x)):

min
wi,i=1,...,k

‖T (ĝ (x))‖

If we wished to place more importance on satisfying some of the conditions than on others, we

could, of course, minimize a projection of T (ĝ (x)) other than the norm.

Actually putting the collocation method into practice involves a mire of considerations, including–

for a start– how many and what form of basis functions to use, which projection of T (ĝ (x)) to

minimize, and whether and how to approximate the functional T. Broadly speaking, however, the

method approaches our problem by finding an approximation to a consumption-decision policy

that satisfies the first-order and envelope conditions of the optimal policy.

The computational advantage of collocation arises from its use of the basis functions to inter-

polate between points in our grid of state variables– thereby allowing us to get by with a sparser

grid. But even with a sparser grid, the number of discrete states will explode exponentially with

the number of state variables. Recall from before that with n+ 3 state variables, each discretized

into d points, we have D = dn+3 discrete states. Even if collocation allowed us to reduce the

density of the discretization to, say, d = 50, we’d still need a third of a billion gridpoints for a

problem with five state variables. Indeed, Malin, Kubler and Krueger (2010) note that standard

collocation is "infeasible for three or more dimensions."

It might be possible, using more advanced collocation methods such as Malin, Kubler and

Krueger’s (2010) Smolyak-collocation method, to solve our problem when there are as many as

twenty state variables. This might allow for a reasonable representation of the price process,

especially if prices were modelled using annual rather than more frequent data. But such methods

would still put limits on the model for the petrol price process, whose influence on demand is my

chief interest. Moreover, many issues that I have simply assumed away in this brief treatment–

such as the existence and differentiability of various functions, along with the enforcement of my

model’s many constraints– would have to be successfully addressed. I therefore leave attempts to

solve Model 15 via value function iteration or collocation to the future, and focus in this thesis on

the version of the model that trades limits on the type of price uncertainty for computational ease

and total flexibility in the price process.
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C Deriving Expected Utility for Alternative Utility Func-

tions

If the agent’s utility function is additively or multiplicatively separable, of the form

ut = h(ct) +m(gt) [Additive Separability]

or

ut = h(ct)m(gt) [Multiplicative Separability]

and if prices are distributed uniformly,

pt ∼ U [lowt, hight]

density of pt : f (pt) =
1

hight − lowt
and if the period-t budget is fixed,

ptgt + ct = at

then as long as

hight∫
lowt

h(at − ptgt)dpt exists, expected utility can be expressed in closed form.

To see this, substitute the budget into these utility functions and integrate over the price

distribution:

Additive Separability : vt = h(at − ptgt) +m(gt)

E [vt] =

hight∫
lowt

vtf (pt) dpt

=

hight∫
lowt

1

hight − lowt
[h(at − ptgt) +m(gt)] dpt

=
1

hight − lowt

hight∫
lowt

h(at − ptgt)dpt +
1

hight − lowt

hight∫
lowt

m(gt)dpt

=
1

hight − lowt

hight∫
lowt

h(at − ptgt)dpt +m(gt)
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Multiplicative Separability: vt = h(at − ptgt)m(gt)

E [vt] =

hight∫
lowt

vtf (pt) dpt

=

hight∫
lowt

1

hight − lowt
h(at − ptgt)m(gt) dpt

=
m(gt)

hight − lowt

hight∫
lowt

h(at − ptgt) dpt

In either case, as long as we can solve for

hight∫
lowt

h(at − ptgt) dpt, we can find E [vt].

Amongst the common utility functions for which we can express E [vt] in closed form is Cobb-

Douglas, ut = cαt g
β
t :

E [vt] =
1

hight − lowt
gt

(1 + α) gt

[
(at − lowtgt)1+α − (at − hightgt)1+α

]
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D Optimization Methods

To perform the constrained optimization needed to find the optimal consumption path g1, ..., gT , I

use the command "fmincon" from Matlab’s Optimization Toolbox. My algorithm is interior-point,

with the following tolerances and evaluation limits:

• Termination tolerance on the function value (TolFun): 1e-12

• Termination tolerance on [gasoline consumption,] x (TolX): 1e-12

• Termination tolerance on the constraint violation (TolCon): 0

• Maximum number of function evaluations allowed (MaxFunEvals): 100000
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